Embedding Models
Quick Start​
from litellm import embedding
import os
os.environ['OPENAI_API_KEY'] = ""
response = embedding(model='text-embedding-ada-002', input=["good morning from litellm"])
Proxy Usage​
NOTE
For vertex_ai
,
export GOOGLE_APPLICATION_CREDENTIALS="absolute/path/to/service_account.json"
Add model to config​
model_list:
- model_name: textembedding-gecko
litellm_params:
model: vertex_ai/textembedding-gecko
general_settings:
master_key: sk-1234
Start proxy​
litellm --config /path/to/config.yaml
# RUNNING on http://0.0.0.0:4000
Test​
- Curl
- OpenAI (python)
- Langchain Embeddings
curl --location 'http://0.0.0.0:4000/embeddings' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data '{"input": ["Academia.edu uses"], "model": "textembedding-gecko", "encoding_format": "base64"}'
from openai import OpenAI
client = OpenAI(
api_key="sk-1234",
base_url="http://0.0.0.0:4000"
)
client.embeddings.create(
model="textembedding-gecko",
input="The food was delicious and the waiter...",
encoding_format="float"
)
from langchain_openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings(model="textembedding-gecko", openai_api_base="http://0.0.0.0:4000", openai_api_key="sk-1234")
text = "This is a test document."
query_result = embeddings.embed_query(text)
print(f"VERTEX AI EMBEDDINGS")
print(query_result[:5])
Input Params for litellm.embedding()
​
Any non-openai params, will be treated as provider-specific params, and sent in the request body as kwargs to the provider.
Required Fields​
model
: string - ID of the model to use.model='text-embedding-ada-002'
input
: string or array - Input text to embed, encoded as a string or array of tokens. To embed multiple inputs in a single request, pass an array of strings or array of token arrays. The input must not exceed the max input tokens for the model (8192 tokens for text-embedding-ada-002), cannot be an empty string, and any array must be 2048 dimensions or less.
input=["good morning from litellm"]
Optional LiteLLM Fields​
user
: string (optional) A unique identifier representing your end-user,dimensions
: integer (Optional) The number of dimensions the resulting output embeddings should have. Only supported in OpenAI/Azure text-embedding-3 and later models.encoding_format
: string (Optional) The format to return the embeddings in. Can be either"float"
or"base64"
. Defaults toencoding_format="float"
timeout
: integer (Optional) - The maximum time, in seconds, to wait for the API to respond. Defaults to 600 seconds (10 minutes).api_base
: string (optional) - The api endpoint you want to call the model withapi_version
: string (optional) - (Azure-specific) the api version for the callapi_key
: string (optional) - The API key to authenticate and authorize requests. If not provided, the default API key is used.api_type
: string (optional) - The type of API to use.
Output from litellm.embedding()
​
{
"object": "list",
"data": [
{
"object": "embedding",
"index": 0,
"embedding": [
-0.0022326677571982145,
0.010749882087111473,
...
...
...
]
}
],
"model": "text-embedding-ada-002-v2",
"usage": {
"prompt_tokens": 10,
"total_tokens": 10
}
}
OpenAI Embedding Models​
Usage​
from litellm import embedding
import os
os.environ['OPENAI_API_KEY'] = ""
response = embedding(
model="text-embedding-3-small",
input=["good morning from litellm", "this is another item"],
metadata={"anything": "good day"},
dimensions=5 # Only supported in text-embedding-3 and later models.
)
Model Name | Function Call | Required OS Variables |
---|---|---|
text-embedding-3-small | embedding('text-embedding-3-small', input) | os.environ['OPENAI_API_KEY'] |
text-embedding-3-large | embedding('text-embedding-3-large', input) | os.environ['OPENAI_API_KEY'] |
text-embedding-ada-002 | embedding('text-embedding-ada-002', input) | os.environ['OPENAI_API_KEY'] |
Azure OpenAI Embedding Models​
API keys​
This can be set as env variables or passed as params to litellm.embedding()
import os
os.environ['AZURE_API_KEY'] =
os.environ['AZURE_API_BASE'] =
os.environ['AZURE_API_VERSION'] =
Usage​
from litellm import embedding
response = embedding(
model="azure/<your deployment name>",
input=["good morning from litellm"],
api_key=api_key,
api_base=api_base,
api_version=api_version,
)
print(response)
Model Name | Function Call |
---|---|
text-embedding-ada-002 | embedding(model="azure/<your deployment name>", input=input) |
h/t to Mikko for this integration
OpenAI Compatible Embedding Models​
Use this for calling /embedding
endpoints on OpenAI Compatible Servers, example https://github.com/xorbitsai/inference
Note add openai/
prefix to model so litellm knows to route to OpenAI
Usage​
from litellm import embedding
response = embedding(
model = "openai/<your-llm-name>", # add `openai/` prefix to model so litellm knows to route to OpenAI
api_base="http://0.0.0.0:4000/" # set API Base of your Custom OpenAI Endpoint
input=["good morning from litellm"]
)
Bedrock Embedding​
API keys​
This can be set as env variables or passed as params to litellm.embedding()
import os
os.environ["AWS_ACCESS_KEY_ID"] = "" # Access key
os.environ["AWS_SECRET_ACCESS_KEY"] = "" # Secret access key
os.environ["AWS_REGION_NAME"] = "" # us-east-1, us-east-2, us-west-1, us-west-2
Usage​
from litellm import embedding
response = embedding(
model="amazon.titan-embed-text-v1",
input=["good morning from litellm"],
)
print(response)
Model Name | Function Call |
---|---|
Titan Embeddings - G1 | embedding(model="amazon.titan-embed-text-v1", input=input) |
Cohere Embeddings - English | embedding(model="cohere.embed-english-v3", input=input) |
Cohere Embeddings - Multilingual | embedding(model="cohere.embed-multilingual-v3", input=input) |
Cohere Embedding Models​
https://docs.cohere.com/reference/embed
Usage​
from litellm import embedding
os.environ["COHERE_API_KEY"] = "cohere key"
# cohere call
response = embedding(
model="embed-english-v3.0",
input=["good morning from litellm", "this is another item"],
input_type="search_document" # optional param for v3 llms
)
Model Name | Function Call |
---|---|
embed-english-v3.0 | embedding(model="embed-english-v3.0", input=["good morning from litellm", "this is another item"]) |
embed-english-light-v3.0 | embedding(model="embed-english-light-v3.0", input=["good morning from litellm", "this is another item"]) |
embed-multilingual-v3.0 | embedding(model="embed-multilingual-v3.0", input=["good morning from litellm", "this is another item"]) |
embed-multilingual-light-v3.0 | embedding(model="embed-multilingual-light-v3.0", input=["good morning from litellm", "this is another item"]) |
embed-english-v2.0 | embedding(model="embed-english-v2.0", input=["good morning from litellm", "this is another item"]) |
embed-english-light-v2.0 | embedding(model="embed-english-light-v2.0", input=["good morning from litellm", "this is another item"]) |
embed-multilingual-v2.0 | embedding(model="embed-multilingual-v2.0", input=["good morning from litellm", "this is another item"]) |
HuggingFace Embedding Models​
LiteLLM supports all Feature-Extraction Embedding models: https://huggingface.co/models?pipeline_tag=feature-extraction
Usage​
from litellm import embedding
import os
os.environ['HUGGINGFACE_API_KEY'] = ""
response = embedding(
model='huggingface/microsoft/codebert-base',
input=["good morning from litellm"]
)
Usage - Custom API Base​
from litellm import embedding
import os
os.environ['HUGGINGFACE_API_KEY'] = ""
response = embedding(
model='huggingface/microsoft/codebert-base',
input=["good morning from litellm"],
api_base = "https://p69xlsj6rpno5drq.us-east-1.aws.endpoints.huggingface.cloud"
)
Model Name | Function Call | Required OS Variables |
---|---|---|
microsoft/codebert-base | embedding('huggingface/microsoft/codebert-base', input=input) | os.environ['HUGGINGFACE_API_KEY'] |
BAAI/bge-large-zh | embedding('huggingface/BAAI/bge-large-zh', input=input) | os.environ['HUGGINGFACE_API_KEY'] |
any-hf-embedding-model | embedding('huggingface/hf-embedding-model', input=input) | os.environ['HUGGINGFACE_API_KEY'] |
Mistral AI Embedding Models​
All models listed here https://docs.mistral.ai/platform/endpoints are supported
Usage​
from litellm import embedding
import os
os.environ['MISTRAL_API_KEY'] = ""
response = embedding(
model="mistral/mistral-embed",
input=["good morning from litellm"],
)
print(response)
Model Name | Function Call |
---|---|
mistral-embed | embedding(model="mistral/mistral-embed", input) |
Vertex AI Embedding Models​
Usage - Embedding​
import litellm
from litellm import embedding
litellm.vertex_project = "hardy-device-38811" # Your Project ID
litellm.vertex_location = "us-central1" # proj location
response = embedding(
model="vertex_ai/textembedding-gecko",
input=["good morning from litellm"],
)
print(response)
Supported Models​
All models listed here are supported
Model Name | Function Call |
---|---|
textembedding-gecko | embedding(model="vertex_ai/textembedding-gecko", input) |
textembedding-gecko-multilingual | embedding(model="vertex_ai/textembedding-gecko-multilingual", input) |
textembedding-gecko-multilingual@001 | embedding(model="vertex_ai/textembedding-gecko-multilingual@001", input) |
textembedding-gecko@001 | embedding(model="vertex_ai/textembedding-gecko@001", input) |
textembedding-gecko@003 | embedding(model="vertex_ai/textembedding-gecko@003", input) |
text-embedding-preview-0409 | embedding(model="vertex_ai/text-embedding-preview-0409", input) |
text-multilingual-embedding-preview-0409 | embedding(model="vertex_ai/text-multilingual-embedding-preview-0409", input) |
Voyage AI Embedding Models​
Usage - Embedding​
from litellm import embedding
import os
os.environ['VOYAGE_API_KEY'] = ""
response = embedding(
model="voyage/voyage-01",
input=["good morning from litellm"],
)
print(response)
Supported Models​
All models listed here https://docs.voyageai.com/embeddings/#models-and-specifics are supported
Model Name | Function Call |
---|---|
voyage-01 | embedding(model="voyage/voyage-01", input) |
voyage-lite-01 | embedding(model="voyage/voyage-lite-01", input) |
voyage-lite-01-instruct | embedding(model="voyage/voyage-lite-01-instruct", input) |
Provider-specific Params​
Any non-openai params, will be treated as provider-specific params, and sent in the request body as kwargs to the provider.
Example​
Cohere v3 Models have a required parameter: input_type
, it can be one of the following four values:
input_type="search_document"
: (default) Use this for texts (documents) you want to store in your vector databaseinput_type="search_query"
: Use this for search queries to find the most relevant documents in your vector databaseinput_type="classification"
: Use this if you use the embeddings as an input for a classification systeminput_type="clustering"
: Use this if you use the embeddings for text clustering
https://txt.cohere.com/introducing-embed-v3/
- SDK
- PROXY
from litellm import embedding
os.environ["COHERE_API_KEY"] = "cohere key"
# cohere call
response = embedding(
model="embed-english-v3.0",
input=["good morning from litellm", "this is another item"],
input_type="search_document" # 👈 PROVIDER-SPECIFIC PARAM
)
via config
model_list:
- model_name: "cohere-embed"
litellm_params:
model: embed-english-v3.0
input_type: search_document # 👈 PROVIDER-SPECIFIC PARAM
via request
curl -X POST 'http://0.0.0.0:4000/v1/embeddings' \
-H 'Authorization: Bearer sk-54d77cd67b9febbb' \
-H 'Content-Type: application/json' \
-d '{
"model": "cohere-embed",
"input": ["Are you authorized to work in United States of America?"],
"input_type": "search_document" # 👈 PROVIDER-SPECIFIC PARAM
}'