Skip to main content

Image Generation

Quick Start​

from litellm import image_generation
import os

# set api keys
os.environ["OPENAI_API_KEY"] = ""

response = image_generation(prompt="A cute baby sea otter", model="dall-e-3")

print(f"response: {response}")

Proxy Usage​

Setup config.yaml​

model_list:
- model_name: dall-e-2 ### RECEIVED MODEL NAME ###
litellm_params: # all params accepted by litellm.image_generation()
model: azure/dall-e-2 ### MODEL NAME sent to `litellm.image_generation()` ###
api_base: https://my-endpoint-europe-berri-992.openai.azure.com/
api_key: "os.environ/AZURE_API_KEY_EU" # does os.getenv("AZURE_API_KEY_EU")
rpm: 6 # [OPTIONAL] Rate limit for this deployment: in requests per minute (rpm)

Start proxy​

litellm --config /path/to/config.yaml 

# RUNNING on http://0.0.0.0:4000

Test​

curl -X POST 'http://0.0.0.0:4000/v1/images/generations' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-D '{
"model": "dall-e-2",
"prompt": "A cute baby sea otter",
"n": 1,
"size": "1024x1024"
}'
from openai import OpenAI
client = openai.OpenAI(
api_key="sk-1234",
base_url="http://0.0.0.0:4000"
)


image = client.images.generate(
prompt="A cute baby sea otter",
model="dall-e-3",
)

print(image)

Input Params for litellm.image_generation()​

info

Any non-openai params, will be treated as provider-specific params, and sent in the request body as kwargs to the provider.

See Reserved Params

Required Fields​

  • prompt: string - A text description of the desired image(s).

Optional LiteLLM Fields​

model: Optional[str] = None,
n: Optional[int] = None,
quality: Optional[str] = None,
response_format: Optional[str] = None,
size: Optional[str] = None,
style: Optional[str] = None,
user: Optional[str] = None,
timeout=600, # default to 10 minutes
api_key: Optional[str] = None,
api_base: Optional[str] = None,
api_version: Optional[str] = None,
litellm_logging_obj=None,
custom_llm_provider=None,
  • model: string (optional) The model to use for image generation. Defaults to openai/dall-e-2

  • n: int (optional) The number of images to generate. Must be between 1 and 10. For dall-e-3, only n=1 is supported.

  • quality: string (optional) The quality of the image that will be generated. hd creates images with finer details and greater consistency across the image. This param is only supported for dall-e-3.

  • response_format: string (optional) The format in which the generated images are returned. Must be one of url or b64_json.

  • size: string (optional) The size of the generated images. Must be one of 256x256, 512x512, or 1024x1024 for dall-e-2. Must be one of 1024x1024, 1792x1024, or 1024x1792 for dall-e-3 models.

  • timeout: integer - The maximum time, in seconds, to wait for the API to respond. Defaults to 600 seconds (10 minutes).

  • user: string (optional) A unique identifier representing your end-user,

  • api_base: string (optional) - The api endpoint you want to call the model with

  • api_version: string (optional) - (Azure-specific) the api version for the call; required for dall-e-3 on Azure

  • api_key: string (optional) - The API key to authenticate and authorize requests. If not provided, the default API key is used.

  • api_type: string (optional) - The type of API to use.

Output from litellm.image_generation()​


{
"created": 1703658209,
"data": [{
'b64_json': None,
'revised_prompt': 'Adorable baby sea otter with a coat of thick brown fur, playfully swimming in blue ocean waters. Its curious, bright eyes gleam as it is surfaced above water, tiny paws held close to its chest, as it playfully spins in the gentle waves under the soft rays of a setting sun.',
'url': 'https://oaidalleapiprodscus.blob.core.windows.net/private/org-ikDc4ex8NB5ZzfTf8m5WYVB7/user-JpwZsbIXubBZvan3Y3GchiiB/img-dpa3g5LmkTrotY6M93dMYrdE.png?st=2023-12-27T05%3A23%3A29Z&se=2023-12-27T07%3A23%3A29Z&sp=r&sv=2021-08-06&sr=b&rscd=inline&rsct=image/png&skoid=6aaadede-4fb3-4698-a8f6-684d7786b067&sktid=a48cca56-e6da-484e-a814-9c849652bcb3&skt=2023-12-26T13%3A22%3A56Z&ske=2023-12-27T13%3A22%3A56Z&sks=b&skv=2021-08-06&sig=hUuQjYLS%2BvtsDdffEAp2gwewjC8b3ilggvkd9hgY6Uw%3D'
}],
"usage": {'prompt_tokens': 0, 'completion_tokens': 0, 'total_tokens': 0}
}

OpenAI Image Generation Models​

Usage​

from litellm import image_generation
import os
os.environ['OPENAI_API_KEY'] = ""
response = image_generation(model='dall-e-2', prompt="cute baby otter")
Model NameFunction CallRequired OS Variables
dall-e-2image_generation(model='dall-e-2', prompt="cute baby otter")os.environ['OPENAI_API_KEY']
dall-e-3image_generation(model='dall-e-3', prompt="cute baby otter")os.environ['OPENAI_API_KEY']

Azure OpenAI Image Generation Models​

API keys​

This can be set as env variables or passed as params to litellm.image_generation()

import os
os.environ['AZURE_API_KEY'] =
os.environ['AZURE_API_BASE'] =
os.environ['AZURE_API_VERSION'] =

Usage​

from litellm import embedding
response = embedding(
model="azure/<your deployment name>",
prompt="cute baby otter",
api_key=api_key,
api_base=api_base,
api_version=api_version,
)
print(response)
Model NameFunction Call
dall-e-2image_generation(model="azure/<your deployment name>", prompt="cute baby otter")
dall-e-3image_generation(model="azure/<your deployment name>", prompt="cute baby otter")

OpenAI Compatible Image Generation Models​

Use this for calling /image_generation endpoints on OpenAI Compatible Servers, example https://github.com/xorbitsai/inference

Note add openai/ prefix to model so litellm knows to route to OpenAI

Usage​

from litellm import image_generation
response = image_generation(
model = "openai/<your-llm-name>", # add `openai/` prefix to model so litellm knows to route to OpenAI
api_base="http://0.0.0.0:8000/" # set API Base of your Custom OpenAI Endpoint
prompt="cute baby otter"
)

Bedrock - Stable Diffusion​

Use this for stable diffusion on bedrock

Usage​

import os
from litellm import image_generation

os.environ["AWS_ACCESS_KEY_ID"] = ""
os.environ["AWS_SECRET_ACCESS_KEY"] = ""
os.environ["AWS_REGION_NAME"] = ""

response = image_generation(
prompt="A cute baby sea otter",
model="bedrock/stability.stable-diffusion-xl-v0",
)
print(f"response: {response}")

VertexAI - Image Generation Models​

Usage​

Use this for image generation models on VertexAI

response = litellm.image_generation(
prompt="An olympic size swimming pool",
model="vertex_ai/imagegeneration@006",
vertex_ai_project="adroit-crow-413218",
vertex_ai_location="us-central1",
)
print(f"response: {response}")